Application of a novel approach to prepare biodegradable polylactic-co-glycolic acid microspheres: surface liquid spraying.

نویسندگان

  • Hai Tang
  • Ning Xu
  • Jin Meng
  • Chao Wang
  • Shu-fang Nie
  • Wei-san Pan
چکیده

A novel approach which had foreground of industrialization, surface liquid spraying, was studied in this paper to prepare biodegradable polylactic-co-glycolic acid (PLGA) microspheres for controlled release drug delivery system. To compare with the normal methods, the microspheres prepared by this approach were characterized by particle size distribution and photograph of microscope. The relationship between the particle size and the instrument parameters of novel method was set up for the first time. The central composite design (CCD) was applied to study the main effects and interactions of three instrument factors on preparation of microspheres. The particle size of microspheres was below 200 mum and the shape of microspheres was spherical in nature evidenced by microscope photographs. Vinpocetine was used as the model drug to prepare the vinpocetine PLGA microspheres (VIN-PLGA-MS), and then drug loading, entrapment efficiency, scanning electron microscopy (SEM), Differential Scanning Calorimetry (DSC) and in vitro drug release behavior were examined. The results indicated that the drug loading and entrapment efficiency were increased using the novel method. The drug released slowly more than 30 days. The release behavior was fit for four kinds of kinetic model. The result indicated that release behavior was fitted by Zero-order kinetic model before release 72 hours, and was fitted with First-order kinetic model after release 72 hours. The novel method developed in our paper can give a promising way for industrialization, and the foreground was also proved by the scale-up batch experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres

  Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days.   Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....

متن کامل

Production of microspheres with surface amino groups from blends of Poly(Lactide-co-glycolide) and Poly(epsilon-CBZ-L-lysine) and use for encapsulation.

Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for enca...

متن کامل

Protective effect of recombinant staphylococcal enterotoxin A entrapped in polylactic-co-glycolic acid microspheres against Staphylococcus aureus infection

Staphylococcus aureus is an important cause of nosocomial and community-acquired infections in humans and animals, as well as the cause of mastitis in dairy cattle. Vaccines aimed at preventing S. aureus infection in bovine mastitis have been studied for many years, but have so far been unsuccessful due to the complexity of the bacteria, and the lack of suitable vaccine delivery vehicles. The c...

متن کامل

Drug release from PLGA microspheres attached to solids using supercritical CO₂.

Functionalization of a porous orthopedic implant with dexamethasone, a widely used anti-inflammatory drug, encapsulated within a biodegradable polymer for controlled release could help reduce or eliminate the inflammation response by the local tissue. In this research, we investigated the possibility of using supercritical carbon dioxide (CO₂) for attaching dexamethasone-loaded PLGA (polylactic...

متن کامل

An Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering

Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan

دوره 127 11  شماره 

صفحات  -

تاریخ انتشار 2007